
OBD II Uart Hookup Guide 

 


OBD II Uart Hook Up SparkFun Wish List

Introduction
Have you ever had an infamous ‘check engine light’? Did you wish you 
could just check the error code yourself and not deal with going to a 
mechanic? With the OBD-II UART, your wishing can become a reality. The 
OBD-II UART allows you to connect your car to a computer, embedded 
microcontrollers, or single board computers such as the Raspberry Pi or 
Beaglebone Black.

This guide will show you:

• What hardwrae is included on the OBD-II UART
• The basics of OBD-II commands
• How to hook this up over FTDI directly with your computer
• How to hook this up to an Arduino and display information to an LCD

Required Materials

To follow along with the tutorial, you will need the following parts.

SparkFun OBD-II UART 
WIG-09555

This board allows you to interface with your car's OBD-II bus. It provid…

Break Away Headers - Straight 
PRT-00116

A row of headers - break to fit. 40 pins that can be cut to any size. Us…

Page 1 of 10



OBD-II to DB9 Cable 
CAB-10087

Once you've hacked everything, why not go out in the garage and ha…

SparkFun FTDI Basic Breakout - 5V 
DEV-09716

This is the newest revision of our [FTDI Basic](http://www.sparkfun.co…

SparkFun USB Mini-B Cable - 6 Foot 
CAB-11301

This is a USB 2.0 type A to Mini-B 5-pin cable. You know, the mini-B …

RedBoard - Programmed with Arduino 
DEV-11575

At SparkFun we use many Arduinos and we're always looking for the …

Required Tools

• Soldering iron
• Solder
• A laptop

Suggested Reading

This tutorial does expect the user to have experience with basic electronics 
and serial communication. If you are unfamiliar with these concepts or need 
a refresher, check out these other tutorials.

• Getting Started with OBD-II
• How to Solder
• Working with Wire
• What is an Arduino?
• Serial Communication
• Hexadecimal

Board Overview
On-Board Diagnostics, Second Generation (OBD-II) is a set of standards 
for implementing a computer based system to control emissions from 
vehicles. It was first introduced in the United States in 1994, and became a 
requirement on all 1996 and newer US vehicles. Other countries, including 
Canada, parts of the European Union, Japan, Australia, and Brazil adopted 
similar legislation. A large portion of the modern vehicle fleet supports 
OBD-II or one of its regional flavors.

Among other things, OBD-II requires that each compliant vehicle be 
equipped with a standard diagnostic connector (DLC) and describes a 
standard way of communicating with the vehicle’s computer, also known as 
the ECU (Electronic Control Unit). A wealth of information can be obtained 
by tapping into the OBD bus, including the status of the malfunction 
indicator light (MIL), diagnostic trouble codes (DTCs), inspection and 
maintenance (I/M) information, freeze frames, VIN, hundreds of real-time 
parameters, and more. You can read more about the OBD-II protocol here.

STN1110 is an OBD to UART interpreter that can be used to convert 
messages between any of the OBD-II protocols currently in use, and UART. 
It is fully compatible with the de facto industry standard ELM327 command 
set. Based on a 16-bit processor core, the STN1110 offers more features 
and better performance than any other ELM327 compatible IC. ScanTool 
has some great resources for the STN1110 available on their website, 
including:

• STN1110 Datasheet
• STN1110 Firmware Updates

Page 2 of 10



Board Schematic

The OBD-II UART board has both the STN1110 and the MCP2551 chips 
populated on it, allowing the user to access both CAN and OBD-II 
protocols. The schematic can be viewed/downloaded here.

The STN1110 is the main controller chip on the board. This communicates 
with the CAN, ISO and J1850 transceivers. Voltage on the board is 
regulated to both 5V and 3.3V for all of the components to function 
properly. The board is powered from the DB9 connector.

Board Pin Out

There are two different connection points on the board. The first, on the 
outside edge of the board, is a 6-pin connector that is compatible with an 
FTDI board. However, only the TX, RX and GND pins are connected on this 
header, to allow for UART communication.

There is a second 8-pin header close to the DB9 connector. This allows the 
user to tap into the VBAT line, the CAN bus, the LINE bus and the J1858 
bus, along with the common ground pin.

Now that we now about the board itself, let’s move on to hooking it up!

First Communcation

Soldering Headers

To create a solid electrical connection with any other components (such as 
an Arduino or an FTDI Basic), you need to solder headers to the board. For 
use with the FTDI Basic, it is easiest to solder male headers into the 6-pin 
header row at the edge of the board. Once you have this done, your board 
should look similar to this.

OBD-II Board with Right-Angle Male Headers soldered onto it.

Connecting to a Vehicle OBD Port

You will need to connect the OBD-II board to the OBD port on your vehicle. 
Depending on the make and model of your car, the port location may vary. 
Consult your owner’s maunal if you cannot locate the port.

Once you have located your OBD port, you will need to hook up the OBD-
to-DB9 cable to the vehicle’s port.

Page 3 of 10



OBD-II to DB9 Cable

The mating end of the cable tends to be a very tight fit and require a bit of 
force to get it sitting securely, so it’s usually easier to start hooking 
everything together between the car and the cable. Once you get the car 
and the cable connected, then connect the DB9 end of the cable to the 
OBD-II board.

Connecting over a Serial Port

Once you have your headers attached to your board, and you’ve connected 
to your vehicle using the OBD-DB9 cable, you can start communicating 
withe OBD-II board over through a serial port using an FTDI Basic breakout 
board. The FTDI pinout matches with the 6 pin header on the OBD-II board, 
but only connects TX, RX and GND. Connect the FTDI board to the 
computer via a mini-USB cable, and open up a serial terminal on your 
computer. Configure the serial connection to 9600 bps, 8 data bits, 1 stop 
bit and no parity.

Once you have your serial terminal set up, you will communicate with the 
OBD-II board by using AT commands. These commands always start with 
“AT”. The OBD-II board is case-insensitive, so don’t stress about only using 
capital letters. After sending “AT”, the next letters sent to the board will be 
the commands that should be executed by the board. You can find a list of 
all of the available AT commands here.

To start communicating with the board, type “ATZ” into your terminal 
window and hit “enter”. This will send the command to reset the board. You 
should see some LEDs flash on your board and then see the start-up 
prompt in the terminal window.

If you receive back any garbled characters, double check that you have the 
correct serial port settings in your terminal.

Page 4 of 10



Once you have proper communcation with your board set up, try reading 
the OBD-II UART system voltage. Type “ATRV” into the terminal window 
and hit enter. The board should then return the system voltage to you.

This voltage reading should match your vehicle’s battery voltage.

To read additional OBD parapters for the vehicle, the OBD-II board must 
first be configured to the correct OBD protocol. There are several different 
OBD protocols, so it can be confusing attempting to find the correct one. 
However, like all things awesome, this OBD-II board automatically detects 
the protocol. To use this auto-detect feature, the vehicle’s ignition must be 
in the ‘On’ position. The vehicle doesn’t necessarily need to be running 
however. Once the ignition is on, send the command “ATSP0” (that’s a 
trailing zero). The board will then reply with “OK” once the proper protocol 
has been detected.

Once you have the proper protocol detected on your board, you can start 
sending OBD commands to the board.

OBD Commands

OBD Commands

The OBD commands are made up of hexadecimal codes written in ASCII 
characters. Generally, these commands contain 2 or more pairs of 
hexadecimal numbers, however there are a few commands that only 
require one hex pair.

The first hex pair in the OBD command represents the OBD mode which 
should be used. Any following hex pairs after that represent the Parameter 
ID (PID) to be read from the specified mode. There are 10 OBD modes, but 
keep in mind that not all vehicles will use all 10 modes. You will want to 
check your particular vehicle’s protocols to see what OBD modes and 
parameter IDs are supported.

Mode Number Mode Description
01 Current Data
02 Freeze Frame Data
03 Diagnostic Trouble Codes
04 Clear Trouble Code
05 Test Results/Oxygen Sensors
06 Test Results/Non-Continuous Testing
07 Show Pending Trouble Codes
08 Special Control Mode
09 Request Vehicle Information
0A Request Permanent Trouble Codes

Page 5 of 10



You can read up more on the OBD PIDs functionality on Wikipedia. Some 
vehicle manufacturers also use their own proprietary parameters, so keep 
in mind that these may not be a comprehensive list for your car. Again, the 
ELM327 AT Commands datasheet is another good resource to check out.

Possibly the most important PID is 00. This works on any vehicle that 
supports OBD and gives a list of other PIDs which the car supports. In your 
terminal window (you do still have that open, right?!), type “0100” and hit 
“enter”. This command translates to “In mode 01, what PIDs are 
supported?”

There is a general structure that all OBD responses have in common. The 
first response byte (in this case 0x41) lists the mode that was requested in 
the command. Thus the board sends 0x40 + 0x01. The second byte is the 
parameter that was requested, so in our case, 0x00. Any following bytes 
are the responses to the command. In this case, the bytes 0xBF, 0x9F, 
0xA8 and 0x93 are the PIDs that are supported by the vehicle.

One other commonly supported parameter is the ‘Read Engine RPM’. Issue 
command “010C' and press enter. Keep in mind that the board will respond 
with a value listed in hex.

The response structure is the same as before. 0x41 to state the board is in 
mode 01, followed by 0x0C to show that the board is looking at the RPM 
parameter. The returned value of 0x0E 0x96 can then be converted into a 
decimal value of 3734. This is actually 4 times the actual RPM, as this 
value is listed in quarters of RPM. Once the value is divided by 4, we have 
an idiling RPM of 933.

Check out the datasheet for the ELM327 for more PIDs to try out. Now let’s 
look at hooking the OBD-II board up to an Arduino.

Connecting to an Arduino

Connecting to an Arduino

Besides connecting directly to your computer with the OBD-II board, you 
can also run the data through an Arduino board and display the information 
on an LCD for embedding a project. For this section, you will need an 
Arduino Uno (or another 5V Arduino board), jumper wires, and a serial 
LCD.

You will only need to make 6 connections between all 3 devices to get this 
set up. Use the diagram and the chart below to properly wire everything.

Page 6 of 10



Arduino Pin Serial LCD Pin OBD-II-UART Pin
GND GND GND
5V 5V None
D3 Rx None

D0(Rx) None Tx-O
D1(Tx) None Rx-I

You will want to download the sketch file here, or you can find the most up 
to date version of the code on GitHub. Keep in mind when you upload this 
to your board, you will want to disconnect the OBD-II board RX line from 
the Arduino TX-0, to prevent issues during code upload, such as bricking 
the OBD-II board.

Another thing to note about this set up is that the Arduino is not powered off 
of the OBD-II board. Therefore, you will need to either use USB power from 
your laptop to power the Arduino, or use a battery supply suck as a 9V 
battery and 9V barrel jack adapter.

Understanding the Sketch

This example sketch is very simple. The Arduino simply communicates with 
the OBD-II board and then sends the information received to the LCD 
screen. You will need to include the SoftwareSerial library in order to 
communicate with the LCD screen. Set the LCD TX/RX lines to pins 2 and 
3 on the Arduino, and initialize the rest of your variables.

#include <SoftwareSerial.h>

//Create an instance of the new soft serial library to contro
l the serial LCD
//Note, digital pin 3 of the Arduino should be connected to R
x of the serial LCD.

SoftwareSerial lcd(2,3);

//This is a character buffer that will store the data from th
e serial port
char rxData[20];
char rxIndex=0;

//Variables to hold the speed and RPM data.
int vehicleSpeed=0;
int vehicleRPM=0;

In the set up loop, the serial port for the LCD as well as the serial port for 
talking to the OBD-II board are both initialized at 9600 bps. The screen is 
then cleared, and the variable names of Speed and RPM are printed on the 
first and second rows respectively. As we did before, the OBD-II board is 
then reset.

Page 7 of 10



void setup(){
//Both the Serial LCD and the OBD­II­UART use 9600 bps.

  lcd.begin(9600);
  Serial.begin(9600);

//Clear the old data from the LCD.
  lcd.write(254);
  lcd.write(1);  

//Put the speed header on the first row.
  lcd.print("Speed: ");
  lcd.write(254);
//Put the RPM header on the second row.

  lcd.write(128+64);
  lcd.print("RPM: ");

//Wait for a little while before sending the reset command t
o the OBD­II­UART
delay(1500);
//Reset the OBD­II­UART

  Serial.println("ATZ");
//Wait for a bit before starting to send commands after the 

reset.
delay(2000);

//Delete any data that may be in the serial port before we b
egin.
  Serial.flush();
} 

The main loop of the code simply sets the cursor locations, clears out any 
old data on the LCD screen, receives the data from the OBD-II board, 
tranlates it to an integer and prints the vehicle speed and RPM to the 
screen.

Page 8 of 10



void loop(){
//Delete any data that may be in the serial port before we b

egin.  
  Serial.flush();
//Set the cursor in the position where we want the speed dat

a.
  lcd.write(254);
  lcd.write(128+8);
//Clear out the old speed data, and reset the cursor positio

n.
  lcd.print("        ");
  lcd.write(254);
  lcd.write(128+8);
//Query the OBD­II­UART for the Vehicle Speed

  Serial.println("010D");
//Get the response from the OBD­II­UART board. We get two re

sponses
//because the OBD­II­UART echoes the command that is sent.
//We want the data in the second response.
getResponse();
getResponse();
//Convert the string data to an integer

  vehicleSpeed = strtol(&rxData[6],0,16);
//Print the speed data to the lcd

  lcd.print(vehicleSpeed);
  lcd.print(" km/h");
delay(100);

//Delete any data that may be left over in the serial port.
  Serial.flush();
//Move the serial cursor to the position where we want the R

PM data.
  lcd.write(254);
  lcd.write(128 + 69);
//Clear the old RPM data, and then move the cursor position 

back.
  lcd.print("          ");
  lcd.write(254);
  lcd.write(128+69);

//Query the OBD­II­UART for the Vehicle rpm
  Serial.println("010C");

//Get the response from the OBD­II­UART board
getResponse();
getResponse();
//Convert the string data to an integer
//NOTE: RPM data is two bytes long, and delivered in 1/4 RP

M from the OBD­II­UART
  vehicleRPM = ((strtol(&rxData[6],0,16)*256)+strtol(&rxData
[9],0,16))/4;
//Print the rpm data to the lcd

  lcd.print(vehicleRPM); 

//Give the OBD bus a rest
delay(100);

} 

The final section of code simply defines the functions to communicate with 
the OBD-II board. This saves any incoming characters to the serial buffer 
until a carriage return is received.The buffer index is set to 0 and the board 
then waits for the next string to come in.

Page 9 of 10



/The getResponse function collects incoming data from the UART 
into the rxData buffer 
// and only exits when a carriage return character is seen. On
ce the carriage return
// string is detected, the rxData buffer is null terminated (s
o we can treat it as a string)
// and the rxData index is reset to 0 so that the next string 
can be copied.
void getResponse(void){
char inChar=0;
//Keep reading characters until we get a carriage return
while(inChar != '\r'){
//If a character comes in on the serial port, we need to a

ct on it.
if(Serial.available() > 0){
//Start by checking if we've received the end of messag

e character ('\r').
if(Serial.peek() == '\r'){

//Clear the Serial buffer
        inChar=Serial.read();

//Put the end of string character on our data string
        rxData[rxIndex]='\0';

//Reset the buffer index so that the next character go
es back at the beginning of the string.
        rxIndex=0;
      } 

//If we didn't get the end of message character, just ad
d the new character to the string.

else{
//Get the new character from the Serial port.

        inChar = Serial.read();
//Add the new character to the string, and increment t

he index variable.
        rxData[rxIndex++]=inChar;
      } 
    } 
  } 
} 

Resources and Going Further
Now that you’ve gotten the basics down for communicating with the OBD-II 
UART board, try modifying the example sketch to work with parameter IDs 
that are supported on your particular vehicle.

You can also work with some free software available online, that prints the 
data out into cool graphs and meters for you without any programming 
required, other than using a serial port. Check out a current list of freeware 
for OBD boards here.

Page 10 of 10

11/16/2015https://learn.sparkfun.com/tutorials/obd-ii-uart-hookup-guide




